
DeepXDE: A deep learning library for
solving differential equations

Lu Lu, Xuhui Meng, Zhiping Mao, George Karniadakis
Division of Applied Mathematics, Brown University, Providence, RI

lu lu 1@brown.edu

Abstract

Physics-informed neural networks (PINNs) for solving par-
tial differential equations (PDEs):
• embeds a PDE into the loss of the neural network.
• is mesh-free and simple, and can be applied to integro-

differential equations [1], fractional PDEs [2], and
stochastic PDEs [3].
• solves inverse problems as easily as forward problems.

DeepXDE, a Python library for PINNs:
• solve multi-physics problems;
• solves time-dependent PDEs as easily as steady states;
• supports complex-geometry domains;
• enables the user code to be compact, resembling closely

the mathematical formulation.

1. PINNs for solving PDEs

1.1 PINN Algorithm
Consider the PDE parameterized by λ for the solution u(x)
with x = (x1, . . . , xd) defined on a domain Ω ⊂ Rd:

f

(
x;
∂u

∂x1
, . . . ,

∂u

∂xd
;
∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
; . . . ;λ

)
= 0, x ∈ Ω,

with boundary conditions (BC) B(u,x) = 0 on ∂Ω.
We consider time t as a special component of x, and Ω
contains the temporal domain. The initial condition (IC) can
be simply treated as a special type of Dirichlet boundary
condition on the spatio-temporal domain.

x

t

σ

σ

...

σ

σ

σ

...

σ

û

NN(x, t;θ)
∂
∂t

∂2

∂x2

∂û
∂t − λ∂2û

∂x2

PDE(λ)

I

∂
∂n

û(x, t)− gD(x, t)

∂û
∂n (x, t)− gR(u, x, t)

BC & IC

Loss θ∗

Tf

Tb

Minimize

Figure 1: Schematic of a PINN for solving the diffusion
equation ∂u

∂t = λ∂
2u
∂x2

with mixed BC u(x, t) = gD(x, t) on
ΓD ⊂ ∂Ω and ∂u

∂n(x, t) = gR(u, x, t) on ΓR ⊂ ∂Ω.

Procedure 1: The PINN algorithm for solving differential
equations.

1. Construct a neural network û(x;θ) with parameters θ as
a surrogate of the solution u(x).

2. Specify the two sets of “residual points”: Tf ⊂ Ω and
Tb ⊂ ∂Ω for the equation and boundary/initial conditions.

3. Specify a loss function by summing the weighted L2

norm of both the PDE equation and boundary condition
residuals.

4. Train the neural network to find the best parameters θ∗
by minimizing the loss function L(θ; T).

To measure the discrepancy between the neural network û
and the PDE constraints, we consider the loss function:

L(θ; T) = wfLf (θ; Tf) + wbLb(θ; Tb),
where

Lf (θ; Tf) =
1

|Tf |
∑
x∈Tf

∥∥∥∥∥f
(
x;
∂û

∂x1
, . . . ;

∂2û

∂x1∂x1
, . . . ; . . . ;λ

)∥∥∥∥∥
2

2

,

Lb(θ; Tb) =
1

|Tb|
∑
x∈Tb
‖B(û,x)‖22,

and wf and wb are the weights.

1.2 Approximation theory
Whether there exists a neural network that can simultane-
ously and uniformly approximate a function and its partial
derivatives?
For m = (m1, . . . ,md) ∈ Zd+, we set |m| := m1 + · · · + md,
and Dm := ∂|m|

∂x
m1
1 ...∂x

md
d

.

Theorem 1 (Pinkus, 1999) Let mi ∈ Zd+, i = 1, . . . , s, and
set m = maxi=1,...,s |mi|. Assume σ ∈ Cm(R) and σ is not
a polynomial. Then the space of single hidden layer neural
nets

M(σ) := span{σ(w · x + b) : w ∈ Rd, b ∈ R}
is dense in Cm1,...,ms

(Rd) := ∩si=1C
mi

(Rd), i.e., for any f ∈
Cm1,...,ms

(Rd), any compact K ⊂ Rd, and any ε > 0, there
exists a g ∈M(σ) satisfying maxx∈K |Dkf (x)−Dkg(x)| < ε,
for all k ∈ Zd+ for which k ≤mi for some i.

1.3 Learning mode
Recent studies show that for function approximation, neural
networks learn target functions from low to high frequen-
cies, but we show that the learning mode of PINNs is differ-
ent due to the existence of high-order derivatives.

Figure 2: Convergence of the amplitude for each fre-
quency during the training process. (A) A neural net-
work is trained to approximate the function f (x) =∑5
k=1 sin(2kx)/(2k). The color represents amplitude values

with the maximum amplitude for each frequency normal-
ized to 1. (B) A PINN is used to solve the Poisson equation
−fxx =

∑5
k=1 2k sin(2kx) with zero boundary conditions.

1.4 Residual-based adaptive refinement (RAR)
The mean residual

Er =
1

V

∫
Ω

∥∥∥∥∥f
(
x;
∂û

∂x1
, . . . ;

∂2û

∂x1∂x1
, . . . ; . . . ;λ

)∥∥∥∥∥ dx

Procedure 2: RAR for improving the distribution of residual
points for training.

1. Select the initial residual points T , and train the neural
network for a limited number of iterations.

2. Estimate the mean PDE residual Er by Monte Carlo inte-
gration, i.e., by the average of values at a set of randomly
sampled locations S = {x1,x2, . . . ,x|S|}:

Er ≈
1

|S|
∑
x∈S

∥∥∥∥∥f
(
x;
∂û

∂x1
, . . . ;

∂2û

∂x1∂x1
, . . . ; . . . ;λ

)∥∥∥∥∥ .
3. Stop if Er < E0. Otherwise, add m new points with the

largest residuals in S to T , and go to Step 2.

2. DeepXDE (https://github.com/lululxvi/deepxde)

2.1 Usage
Solving differential equations in DeepXDE is no more than
specifying the problem using the build-in modules, includ-
ing computational domain (geometry and time), PDE equa-
tions, BC/IC, constraints, training data, network architec-
ture, and training hyperparameters.

Procedure 3: Usage of DeepXDE for solving differential
equations.

1. Specify the computational domain using the geometry
module.

2. Specify the PDE using the grammar of TensorFlow.
3. Specify the boundary and initial conditions.
4. Combine the geometry, PDE and boundary/initial con-

ditions together into data.PDE or data.TimePDE for
time-independent problems or for time-dependent prob-
lems, respectively.
To specify training data, we can either set the specific
point locations, or only set the number of points and then
DeepXDE will sample the required number of points on
a grid or randomly.

5. Construct a neural network using the maps module.
6. Define a Model by combining the PDE problem in Step

4 and the neural net in Step 5.
7. Call Model.compile to set the optimization hyperpa-

rameters, such as optimizer and learning rate. The
weights in the loss can be set here by loss weights.

8. Call Model.train to train the network from random
initialization or a pre-trained model using the argument
model restore path. It is extremely flexible to moni-
tor and modify the training behavior using callbacks.

9. Call Model.predict to predict the PDE solution at dif-
ferent locations.

Geometry Differential
equations

Boundary/initial
conditions Neural net

Training data data.PDE or
data.TimePDE Model

Model.compile(...)Model.train(...,
callbacks=...)Model.predict(...)

Figure 3: Flowchart of DeepXDE. White boxes: the PDE
problem and hyperparameters. Blue boxes combine white
boxes. Orange boxes: the three steps to solve the PDE.

Primitive geometries: interval, triangle, rectangle,
polygon, disk, cuboid, sphere.

A B

A | B

A - B

A & B

| &

-

Figure 4: CSG examples. (left) Union A|B, difference
A − B, and intersection A&B. (right) A complex geometry
is constructed from primitive geometries.

DeepXDE supports
1. Dirichlet/Neumann/Robin/periodic BC, & IC;
2. feed-forward network, and residual network.

2.2 Customizability
All the components are loosely coupled, and thus Deep-
XDE is well-structured and highly configurable.

3. Demonstration examples

3.1 Forward problems: Poisson equation

−∆u(x, y) = 1, (x, y) ∈ Ω, u(x, y) = 0, (x, y) ∈ ∂Ω.

A B C

Figure 5: Comparison of the PINN solution with the solu-
tion obtained by using spectral element method (SEM). (A)
SEM solution, (B) PINN solution, (C) the absolute error.

3.2 Inverse problems
The Lorenz system:

dx

dt
= ρ(y − x),

dy

dt
= x(σ − z)− y, dz

dt
= xy − βz.

A diffusion-reaction system on x ∈ [0, 1], t ∈ [0, 10]:

∂CA
∂t

= D
∂2CA
∂x2

− kfCAC2
B,

∂CB
∂t

= D
∂2CB
∂x2

− 2kfCAC
2
B.

 0

 4

 8

 12

 16

 0 1 2 3 4 5 6

A

P
ar

am
et

er
 v

al
ue

Iterations (104)

True ρ
True σ
True β

Identified ρ
Identified σ
Identified β

-1

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8

B

P
ar

am
et

er
 v

al
ue

Iterations (104)

True kf
True D

Identified kf
Identified D

Figure 6: Identified values of (A) the Lorenz system and
(B) diffusion-reaction system converge to the true values.

References

[1] L. Lu, X. Meng, Z. Mao, G. Karniadakis. DeepXDE: A
deep learning library for solving differential equations.
arXiv preprint arXiv:1907.04502 (2019).

[2] G. Pang∗, L. Lu∗, G. Karniadakis. fPINNs: Frac-
tional physics-informed neural networks. arXiv preprint
arXiv:1811.08967 (2018). (∗Contributed equally)

[3] D. Zhang, L. Lu, L. Guo, G. Karniadakis. Quantifying
total uncertainty in physics-informed neural networks for
solving forward and inverse stochastic problems. arXiv
preprint arXiv:1809.08327 (2018).

Deep Learning for Science School, Lawrence Berkeley National Laboratory, Berkeley, CA, 2019

