‘ Abstract |

Physics-informed neural networks (PINNs) for solving par-
tial differential equations (PDES):

e embed a PDE into the loss of the neural network,
e mesh-free,

e a unified framework: PDE, integro-differential equations
[1], fractional PDEs [2], and stochastic PDEs [3],

e solve inverse problems as easily as forward problems.
DeepXDE, a Python library for PINNs:
e solve multi-physics problems;

e solves time-dependent PDEs as easily as steady states;
e supports complex-geometry domains;

e enables the user code to be compact, resembling closely
the mathematical formulation.

‘ 1. PINNs for solving PDEs |

1.1 PINN Algorithm

Consider the PDE parameterized by A for the solution u(x)

with x = (1, ...,z) defined on a domain Q ¢ R¢:
ou ou O%u 0%u
f <X7 (9961’ ’ ax‘d7 61171(921317 ’ 5’:1;18:1,=d’ 7) 07 X <3

with boundary conditions (BC) B(u,x) =0 on 0X..

We consider time ¢t as a special component of x, and ()
contains the temporal domain. The initial condition (IC) can
be simply treated as a special type of Dirichlet boundary
condition on the spatio-temporal domain.

_\&u

Ox?2

—————————————————————————

— (@) p—(Tosspm™Z 57)

T

—————————————————————————

Figure 1: Schematic of a PINN for solving the diffusion
2

equation %@L)\8 —3 with mixed BC u(z,t) = gp(x,t) on

I'p C 092 and an(x,t) = gp(u,x,t) onT'p C ON.

Procedure 1: The PINN algorithm for solving differential
equations.

1. Construct a neural network u(x; @) with parameters 6 as
a surrogate of the solution u(x).

2. Specify the two sets of “residual points™ 7, C) and
T, C 092 for the equation and boundary/initial conditions.

3. Specify a loss function by summing the weighted L?
norm of both the PDE equation and boundary condition
residuals.

4. Train the neural network to find the best parameters 6*
by minimizing the loss function £(0; 7).

To measure the discrepancy between the neural network
and the PDE constraints, we consider the loss function:

L(O;T)=weLr(0;T¢) +wply(0;Tp),

where
2
9:7) il (X dii 524 A)
f f — L el :
\7}] i Ox1 0x1011 ,
Ly(0:Ty) = — Y _ 1B, x)]|5,
‘%‘XET

and w ¢ and wy, are the weights.

1.2 Approximation theory

Whether there exists a neural network that can simultane-
ously and uniformly approximate a function and its partial
derivatives?

For m = (ml,...,

and D' = o

Oxy"t...0r,
Theorem 1 (Pinkus, 1999) Let m’ € Z%,i = 1,...,s, and
set m = max;—1__s|m'|. Assume o € C"™(R) and o is not
a polynomial. Then the space of single hidden layer neural
nets

my) € 72, we set im| = mj + -+ my,

M(o) = span{o(w -x+b): w e R" b € R}

Is dense in le,...,ms(Rd) = mlecmi(Rd), le., forany f €
cm'sm*(Rd) - any compact K ¢ RY, and any > 0, there
existsa g € /\/l() satisfying maxe K \Dk f(x)—D¥g(x)| < ¢,

for all k € Z for which k < m' for some 1.

3'd Physics Informed Machine Learning Workshop, Santa Fe, NM, January 2020

Division of Applied Mathematics, Brown University, Providence, F

lu lu l@brown.edu

1.3 Learning mode

Recent studies show that for function approximation, neural
networks learn target functions from low to high frequen-
cies, but we show that the learning mode of PINNSs is differ-
ent due to the existence of high-order derivatives.

A 25 I1 B I1
& 2 <

= o=

w15 @

S 105 & 05
T 1 : ©

2 2

%05 I #

0 0
2 4 6 8 10
frequency frequency
Figure 2: Convergence of the amplitude for each fre-

quency during the training process. (A) A neural net-
work is trained to approximate the function f(x) =
S0 sin(2kxz)/(2k). The color represents amplitude values
with the maximum amplitude for each frequency normal-
izedto 1. (B) A PINN is used to solve the Poisson equation
— Jax = 22:1 2k sin(2kx) with zero boundary conditions.

1.4 Residual-based adaptive refinement (RAR)
The mean residual

1 Ot %4
= — L S W N
&r V/Q / (X’ Oxy’ T O0x10xy’) =

Procedure 2: RAR for improving the distribution of residual
points for training.

1. Select the initial residual points 7, and train the neural
network for a limited number of iterations.

2. Estimate the mean PDE residual &, by Monte Carlo inte-
gration, i.e., by the average of values at a set of randomly
sampled locations § = {x1,x9, ... ,x‘8|}:

1 Ol 021
g’]" |S| Z f <X7 ax17 7633163317)))

3. Stop if & < &). Otherwise, add m new points with the
largest residuals in S to 7, and go to Step 2.

‘ 2. DeepXDE (https://github.com/lululxvi/deepxde) |

2.1 Usage

Solving differential equations in DeepXDE is no more than
specifying the problem using the build-in modules, includ-
Ing computational domain (geometry and time), PDE equa-
tions, BC/IC, constraints, training data, network architec-
ture, and training hyperparameters.

Procedure 3: Usage of DeepXDE for solving Poisson
equation in Example 3.1.

1. geometry

1 geom = dde.geometry.Polygon (

2 [[O/ O]/ [ll O]I [1/ _1]/ [_l/ _l]/ [_ll 1]/ [O/ 1]])
2. PDE

1def pde(x, y):

2 dy_x = tf.gradients(y, x) [0]

3 dy_x, dy_y = dy_x[:, 0:1], dy_x[:, 1:]

4 dy_xx = tf.gradients(dy_x, x)[0][:, 0:1]
5 dy_yy = tf.gradients(dy_y, x)[0][:, 1:]
6 return —-dy_xx - dy_yy - 1

3.BC

1 def boundary(x, on_boundary) :

2 return on_boundary

3

4 def func(x) :

5 return np.zeros([len(x), 11)

6

7bc = dde.DirichletBC (geom, func, boundary)

4. data: geometry + PDE + BC + “training” points

1 data = dde.data.PDE (

2 geom, 1, pde, bc, num_domain=1200, num_boundary=120)
5. network

1 net = dde.maps.FNN (

2 [2] + [50] = 4 + [1], "tanh", "Glorot uniform")

6. model: data + network

1 model = dde.Model (data, net)

/. train the model

1model.compile ("adam", 1lr=0.001)
2model.train (epochs=50000)

- DeepXDE: A deep learning library for
solving differential equations lo

Lu Lu, Xuhui Meng, Zhiping Mao, George Karniadakis

pul

' BROWN

[Geometry } [Differential } [Bounda.r.y/lnltlal} [Neural net }

equatlons conditions
s data PDE or
[Training data '—» data TimePDE [Model
. Model.train(..., .
Model.predict(...) f«— T <—— Model.compile(...)

Figure 3: Flowchart of DeepXDE. White boxes: the PDE
problem and hyperparameters. Blue boxes combine white
boxes. Orange boxes: the three steps to solve the PDE.

Primitive geometries: interval, triangle, rectangle,
polygon, disk, cuboid, sphere.

7 ~ Feasssnass

/ | S S T

A ' |B) EE e

\ L T NG s

~ L d

— N\
| — q
ANV A

A&B

Figure 4: Constructive solid geometry (CSG) examples.
(left) Union A|B, difference A — B, and intersection A& B.
(right) A complex geometry is constructed from primitive
geometries.

DeepXDE supports
1. Dirichlet/Neumann/Robin/periodic/general BC, & IC;

2. feed-forward network, and residual network.

2.2 Customizability

All the components are loosely coupled, and thus Deep-
XDE is well-structured and highly configurable.

‘ 3. Demonstration examples |

3.1 Forward problem: Poisson equation

—Au(z,y) =1, (x,y) € Of.

SRS

Figure 5: Comparison of the PINN solution with the solu-
tion obtained by using spectral element method (SEM). (A)
SEM solution, (B) PINN solution, (C) the absolute error.

(z,y) € Q, wu(x,y)=0,

T 0 1

3.2 Inverse problems

The Lorenz system:

dx dy dz

w=ply-z), —=alo-2) -y —

A diffusion-reaction system on x € [0, 1],t € |0, 10]:

= xy — Bz.

0Cy . 0°Cy , 0Cp 0°Cp
=D — ——2_D —9
o a2 MCACE o HCACE
A 1 1 1 B 3 1 1 1 1 1 1 1

- - ldentified p —
- - |ldentified 0 —
- - |dentified p —

Parameter value
Parameter value

True ki - - Identified ki —
True D - - Identified D —

| | | 1 | | | | | | |

3 4 5 6 0 1 2 3 4 5 6 7 8
Iterations (10%) # Iterations (10%)

Figure 6: /dentified values of (A) the Lorenz system and
(B) diffusion-reaction system converge to the true values.

References |

1] L. Lu, X. Meng, Z. Mao, G. Karniadakis. DeepXDE: A
deep learning library for solving differential equations.
arXiv preprint arXiv:1907.04502 (2019).

[2] G. Pang*, L. Lu*, G. Karniadakis. fPINNs: Fractional
physics-informed neural networks. SIAM J. Sci. Com-
put. 41.4 (2019): A2603-A2626. (*Contributed equally)

[3]D. Zhang, L. Lu, L. Guo, G. Karniadakis. Quantify-
Ing total uncertainty in physics-informed neural networks
for solving forward and inverse stochastic problems. J.
Comput. Phys. 397 (2019): 108850.

