

Abstract

- Discovering governing equations of a physical system, represented by partial differential equations (PDEs), from data is a central challenge.
- Current methods require either some prior knowledge (e.g., candidate PDE terms) to discover the PDE form, or a large dataset to learn a surrogate model of the PDE solution operator.
- We propose the first learning method that only needs one PDE solution, i.e., one-shot learning.
- We first decompose the entire computational domain into small domains, where we learn a local solution operator, and then find the coupled solution via a fixed-point iteration.

Problem setup: Learning solution Training dataset: operators of PDEs

Consider a physical system governed by a PDE defined on a spatio-temporal domain $\Omega \subset \mathbb{R}^d$:

 $\mathcal{F}[u(\mathbf{x}); f(\mathbf{x})] = 0, \quad \mathbf{x} = (x_1, x_2, \dots, x_d) \in \Omega$ Prediction via a fixed-point iteration. with suitable initial and boundary conditions. We define the For a new $f = f_0 + \Delta f$, we use u_0 as the initial guess of u, dom field (GRF): $\Delta f \sim \mathcal{GP}(0, k(x_1, x_2))$, where the covariance solution operator as and then in each iteration, we apply the trained network on the kernel is $k(x_1, x_2) = \sigma^2 \exp(-||x_1 - x_2||^2/2l^2)$. current solution as the input to get a new solution.

$$\mathcal{G}: f(\mathbf{x}) \mapsto u(\mathbf{x}).$$

Dataset: $\mathcal{T} = \{(f_i, u_i)\}_{i=1}^{|\mathcal{T}|}$, and (f_i, u_i) is the *i*-th data point, where $u_i = \mathcal{G}(f_i)$ is the PDE solution for f_i .

Goal: Learn \mathcal{G} from \mathcal{T} , such that for a new f, we can predict the corresponding solution $u = \mathcal{G}(f)$.

Extreme difficult scenario: We have only one data point for training, i.e., one-shot learning with $|\mathcal{T}| = 1$, and we let $\mathcal{T} = \{ (f_{\mathcal{T}}, u_{\mathcal{T}}) \}.$

- Assume we can select f_{τ} ;
- We only predict f in a neighborhood of some f_0 , where we know the solution $u_0 = \mathcal{G}(f_0)$.

One-shot learning for solution operators of partial differential equations

Lu Lu, Haiyang He, Priya Kasimbeg, Rishikesh Ranade & Jay Pathak Massachusetts Institute of Technology; Ansys Inc. Email: lu_lu@mit.edu

Methods: One-shot learning based Demonstration examples: Nonlinear diffusion-reaction equation on locality

Idea: Consider that derivatives and PDEs are defined locally, i.e., the same PDE is satisfied in an arbitrary small domain inside Ω . We partition the entire domain Ω into many small domains, i.e., a mesh of Ω .

Learning the local solution operator via a neural network.

Consider a mesh node at the location \mathbf{x}^* (the red node). If we know the solution u at the boundary of Ω ($\partial \Omega$) and f within Ω , then $u(\mathbf{x}^*)$ is determined by the PDE. We use a neural network to represent this relationship

 $\tilde{\mathcal{G}}: \{u(\mathbf{x}): \mathbf{x} \in \partial \tilde{\Omega}\} \cup \{f(\mathbf{x}): \mathbf{x}\}$

- "Large": By traversing Ω for all small local domains, we can generate many input-output pairs for training.
- "Diverse": We choose $f_{\mathcal{T}}$ to be uniform random between -1 and 1 on each mesh node, i.e., $f_{\mathcal{T}}(\mathbf{x})$ is sampled from U(-1, 1).

Initiate: $u(\mathbf{x}) \leftarrow u_0(\mathbf{x})$ for all $\mathbf{x} \in \Omega$ while u has not converged do for $\mathbf{x} \in \Omega$ do $\hat{u}(\mathbf{x}) \leftarrow \mathcal{G}(\text{the inputs of } u \text{ and } f \text{ in } \Omega)$ Update: $u(\mathbf{x}) \leftarrow \hat{u}(\mathbf{x})$ for all $\mathbf{x} \in \hat{\Omega}$

References

[1] L. Lu, H. He, P. Kasimbeg, R. Ranade, and J. Pathak, "One-shot learning for solution operators of partial differential equations," arXiv preprint arXiv:2104.05512, 2021.

$$\mathbf{x} \in \tilde{\Omega} \} \mapsto u(\mathbf{x}^*).$$

Local domains $\hat{\Omega}$ of the diffusion-reaction equation:

Prediction: We randomly sample Δf from a Gaussian ran-