
One-shot learning for solution operators of
partial differential equations
Lu Lu, Haiyang He, Priya Kasimbeg, Rishikesh Ranade & Jay Pathak

Massachusetts Institute of Technology ; Ansys Inc.

Email: lu lu@mit.edu

Abstract

•Discovering governing equations of a physical system, rep-
resented by partial differential equations (PDEs), from data
is a central challenge.

•Current methods require either some prior knowledge (e.g.,
candidate PDE terms) to discover the PDE form, or a large
dataset to learn a surrogate model of the PDE solution op-
erator.

•We propose the first learning method that only needs one
PDE solution, i.e., one-shot learning.

•We first decompose the entire computational domain into
small domains, where we learn a local solution operator, and
then find the coupled solution via a fixed-point iteration.

Problem setup: Learning solution
operators of PDEs

Consider a physical system governed by a PDE defined on a
spatio-temporal domain Ω ⊂ Rd:

F [u(x); f (x)] = 0, x = (x1, x2, . . . , xd) ∈ Ω

with suitable initial and boundary conditions. We define the
solution operator as

G : f (x) 7→ u(x).

Dataset: T = {(fi, ui)}|T |i=1, and (fi, ui) is the i-th data point,
where ui = G(fi) is the PDE solution for fi.
Goal: Learn G from T , such that for a new f , we can predict
the corresponding solution u = G(f ).
Extreme difficult scenario: We have only one data point
for training, i.e., one-shot learning with |T | = 1, and we let
T = {(fT , uT )}.
•Assume we can select fT ;

•We only predict f in a neighborhood of some f0, where we
know the solution u0 = G(f0).

Methods: One-shot learning based
on locality

Idea: Consider that derivatives and
PDEs are defined locally, i.e., the same
PDE is satisfied in an arbitrary small
domain inside Ω. We partition the
entire domain Ω into many small do-
mains, i.e., a mesh of Ω.

Learning the local solution operator via a neural net-
work.
Consider a mesh node at the location x∗ (the red node). If we
know the solution u at the boundary of Ω̃ (∂Ω̃) and f within Ω̃,
then u(x∗) is determined by the PDE. We use a neural network
to represent this relationship

G̃ : {u(x) : x ∈ ∂Ω̃} ∪ {f (x) : x ∈ Ω̃} 7→ u(x∗).

Training dataset:

•“Large”: By traversing Ω for all small local domains, we can
generate many input-output pairs for training.

•“Diverse”: We choose fT to be uniform random between -1
and 1 on each mesh node, i.e., fT (x) is sampled from U(−1, 1).

Prediction via a fixed-point iteration.
For a new f = f0 + ∆f , we use u0 as the initial guess of u,
and then in each iteration, we apply the trained network on the
current solution as the input to get a new solution.
Initiate: u(x)← u0(x) for all x ∈ Ω
while u has not converged do
for x ∈ Ω do

û(x)← G̃(the inputs of u and f in Ω̃)
Update: u(x)← û(x) for all x ∈ Ω
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Demonstration examples: Nonlin-
ear diffusion-reaction equation

∂u

∂t
= D

∂2u

∂x2
+ ku2 + f (x), x ∈ [0, 1], t ∈ [0, 1],

with zero IC/BC. D = 0.01 and k = 0.01.
Training data for the diffusion-reaction equation:

Local domains Ω̃ of the diffusion-reaction equation:

Prediction: We randomly sample ∆f from a Gaussian ran-
dom field (GRF): ∆f ∼ GP(0, k(x1, x2)), where the covariance
kernel is k(x1, x2) = σ2 exp(−‖x1 − x2‖2/2l2).


