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Introduction

@ Shallow NNs (single hidden layer)
> universal approximation theorem
@ Deep (& narrow) NNs

> Better than shallow NNs (of comparable size)
» 2%~ d [Mhaskar & Poggio, 2016]

SiZ€shallow
= Deep & narrow
e RelLU := max(z,0)
» Width limit?
For continuous functions [0, 1]%» — Rut [Hanin & Sellke, 2017]:

din, +1 < minimal width < d;,, + dous
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Introduction

Training of NNs
e NP-hard [Sima, 2002]
@ Local minima [Fukumizu & Amari, 2002]
@ Bad saddle points [Kawaguchi, 2016]
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Introduction

Training of NNs

e NP-hard [Sima, 2002]

@ Local minima [Fukumizu & Amari, 2002]

@ Bad saddle points [Kawaguchi, 2016]
RelLU

@ Dying ReLU neuron: stuck in the negative side
Deep RelLU nets?

Dying ReLU network

NN is a constant function after initialization J
Collapse

NN converges to the “mean” state of the target function during training J
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© Examples
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1D Examples
f(x) = |z

o [ = ReLU(z) + ReLU(—z) = [1 1] ReLU(l_lll x)

@ 2-layer with width 2
Train a 10-layer ReLU NN with width 2 (MSE loss, whatever optimizer)
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1D Examples
f(z) = |x]
o [ = ReLU(z) + ReLU(—z) = [1 1] ReLU(l_lll x)
@ 2-layer with width 2
Train a 10-layer ReLU NN with width 2 (MSE loss, whatever optimizer)

@ Collapse to the mean value (A): ~93%
e Collapse partially (B)

e )
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1D Examples

f(z) = xsin(5z)

A

D
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y = xsin(5x) —

NN = =
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NN = =

T T T
y = xsin(5x) —
NN = =
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NN = =
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2D Examples

1 1
x| (11 -1 -1
F6) =y — x| = | RtV )
-1 1
A B
Y1 = [Xq+g| Y1 = [Xq+xa|
NN
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Loss

e Mean squared error (MSE) = mean

@ Mean absolute error (MAE) = median

C

T T T T
y = xsin(5x) ——

MSE - -

MAE =+ =

2T

T
—— ¥ = 15,0+0:25in(5x)
MSE
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Overview

© Theoretical analysis
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Setup

Feed-forward ReLU neural network AL : Réin —y Rdout
L layers
In the layer ¢

» Ny neurons (Ng = din, NI, = dout)

» Weight W% N, x N,_; matrix
» Bias b? € RN

Input: x € R%n
Neural activity in the layer £: N¢(x) € RN

NE(x) = WEQNL(x)) + b € RV, for 2<¢<L
N(x) = Wx + b
rg [ [
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Setup

@ Training data
T = {xi, f(x)h<isir € D = By (0) = {z € R%|||z]|2 < 7}

@ Loss function

M

LO,T) = tN"(x:0), f(x:)),

i=1

where 6 = {W*, bzhgegL
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N will eventually Die in probability as L — oo

Theorem 1

Let MY (x) be a ReLU NN with L layers, each having Ny,---, Np
neurons. Suppose

© Weights are independently initialized from a symmetric distribution
around 0,
@ Biases are either from a symmetric distribution or set to be zero.

Then
L—1

P(NF(x) dies) <1 — J[ (1 - (1/2)").
/=1
Furthermore, assuming Ny = NN for all £,
lim P(NL(x) dies) =1, lim P(NE(x) dies) = 0.

L—oo N—oo
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Proof

Lemma 1

Let N'Z(x) be a ReLU NN of L-layers. Suppose weights are independently
from distributions satisfying P(sz = 0) = 0 for any nonzero z € RNe-1

and any j-th row of W*. Then

P(NY(x) dies) = P(3¢ e {1,...,L — 1} sit. ¢(N¥(x)) =0 V¥x € D).

v
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Proof

Lemma 1

Let N'Z(x) be a ReLU NN of L-layers. Suppose weights are independently
from distributions satisfying P(sz = 0) = 0 for any nonzero z € RNe-1
and any j-th row of W¥. Then

P(NY(x) dies) = P(3¢ e {1,...,L — 1} sit. ¢(N¥(x)) =0 V¥x € D).

v

@ For a given x,
j j—1 j Te 1
P (WIoWT () + b < 0145, ) = o,

where A%,x ={V1<j</t ¢(NI(x))#0}
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Dead Networks would Collapse

Theorem 2

Suppose the ReLU NN dies. Then for any loss £, the network is optimized
to a constant function by any gradient based method.
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Dead Networks would Collapse

Theorem 2

Suppose the ReLU NN dies. Then for any loss £, the network is optimized
to a constant function by any gradient based method.

Proof

o lemmal=3/c{l,...,L—1}st ¢(N*x))=0VxeD
o Gradients of £ wrt the weights/biases in the 1,...,[-th layers vanish
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Dead Networks would Collapse

Theorem 2

Suppose the ReLU NN dies. Then for any loss £, the network is optimized
to a constant function by any gradient based method.

Proof
o lemmal=3/c{l,...,L—1}st ¢(N*x))=0VxeD

o Gradients of £ wrt the weights/biases in the 1,...,[-th layers vanish
Assuming training data are iid from Pp, the optimized network is

NE(x;0%) = argmin Eyp,, [((c, f(x)))]

ceRNL
o MSE/L? = E[f(x)]
. 5 &
e MAE/L' = med f 6F
/ ian of f(x) fg
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Probability of Dying when d;, = 1

Theorem 3

Let N'X(x) be a bias-free ReLU NN with L > 2 layers, each having N

neurons at di, = 1. Suppose weights are independently initialized from
continuous symmetric distributions around 0. Then

L — Lf[lu —(1/2)Y) > P(NL(z) dies)
{=1
> 1— (Pag)o2 — (1 —1 i_(]j\;rl_)(ll)g_jV_N) (Pas)“™2 — (Pa3)22)

where7322:1—2LNandpggzl—w%l—%.
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Numerical Test

@ A ReLU NN with d;, =1
@ Weights randomly initialized from symmetric distributions
@ Biases are initialized to 0

More likely to die when it is deeper and narrower
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Safe Operating Region for a ReLU NN

Keep the dying probability < 10% or 1%

Lu (Brown)
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Overview

@ Asymmetric initialization (Shin)
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